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Supermulticonformal Field Theory

A. Ouarab,1 E. H. El Kinani1,2 and M. Zakkari3

Received October 10, 1997

In this paper we develop the superspace structure of the multicomplex space
MCn for n 5 2n. We extend the basic properties of the multicomplex analysis to
the case of SMCNÃ

n , called supermulticomp lex spaces: this goes from the
superanalyticity condition to the residue theorem. The formalism of 2D
superconformal field theory is also developed on SMCNÃ

n . We then show that the
associated superconformal symmetry is infinite dimensional and leads to n copies
of super-Virasoro algebra. This results can be applied to construct a free-field
theory on the volume of the (n 2 1)-super-brane. A model of field theory describing
a bosonic case is also presented.

1. INTRODUCTION

Number theory has always been a rich subject, especially when numbers

are described in terms of algebra. Recall that only four integer and composition

algebras can be constructed, the so-called real, complex, quaternionic (Hamil-
ton, 1848, 1853) and octonionic (Young, 1848) numbers. This is a conse-

quence of the Hurwitz theorem (Hurwitz, 1898; Cayley, 1849). However, by

relaxing at least one of the two conditions of validity of the Hurwitz theorem,

some extensions have been proposed (Clifford, 1878; Lipschit, 1880;

Grassmann, 1855; Graves (1847, 1848). In fact all the possible extensions

of complex numbers can be understood in the framework of systems of
complex numbers. Among these systems we consider the one generated by

a fundamental unit e satisfying the basic relation e n 5 2 1, n $ 2. This

system was considered by Weierstrass (1884). The algebra obtained, called
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multicomplex algebra (Fleury et al., 1993) and denoted MCn , is an n-dimen-

sional R-algebra given by

MCn [ H z 5 o
n 2 1

i 5 0
xi e i, xi P R J (1.1)

It has been shown that most theorems of complex analysis can be extended

to the MCn spaces with n . 2 (Fleury et al., 1995).
Our work consists in defining a supersymmetric extension of the MCn

spaces. The superspace obtained SMCN
n is a set of points parametrized by

the multicomplex numbers z
( l)

(the n lth conjugates of z) and the Grassmann

coordinates u
( l)

1, i 5 1, 2, . . . , Nl , l 5 0, 1, 2, . . . , n 2 1; N
Ã

refers then to

the set (N0, N1, . . . , Nn 2 1); we note that

SMCNÃ
n 5 {( z

(l)

, u
(l )

i) l 5 0, 1, 2, . . . , n 2 1, i 5 1, 2, . . . , Nl}

(1.2)

A first remark here is that the number of supersymmetries depends on the

direction z
( l)

, in contrast to the usual 2D case. A second important remark is

that the above construction is valid only under the assumption n 5 2p, p $
1. Here we will discuss superanalytic and superconformal transformations

on MCN
n . We then consider superconformal tensors on SMCN

n and study a
plausible superfield theory, SMCN

n . For simplicity we study the case N
Ã

5 (0,

. . . , 1, 0, . . . , 0), 1 on the lth position for l P {0, 1, 2, . . . , n 2 1}. We

obtain then n commuting copies of the N 5 1 super-Virasoro algebra. Finally,

we give the action describing a bosonic theory on MCn.

2. GENERAL

This section is devoted to the introduction of the set MCn of multicomplex

numbers and certain of their properties which are useful for the sequel. We

also give a brief description of superconformal 2D manifolds, in particular

the N 5 2 supersymmetric extension of the usual complex analysis (Belavin

et al., 1984). This case will be useful for the study of the superspace structure
of MCn.

Following Fleury et al. (1993) consider a system of complex numbers

generated by a fundamental unit e which satisfies the basic relation

e n 5 2 1, n P N* (2.1)

To not generate the usual complex numbers, the solution k 5 exp(i p /n) is
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excluded. A faithful matrix representation of e is given by the n 3 n diagonal

matrix (Eij )1 # i, j # n,

Eij 5 k 2i 2 1 ? d ij, i, j 5 1, 2, 3, . . . , n (2.2)

The multicomplex algebra MCn is an n-dimensional R-algebra generated

by the free family {1, e, e 2, . . . , e n 2 1}:

MCn [ F z 5 o
n 2 1

i 5 0

xi e
i, xi P R G

The algebra MCn was provided by a pseudo-norm

|z|n 5 det 1
x0 x1 x n 2 1

2 x n 2 1 x0

? ? ? ? ? ? x1

2 x1 2 x n 2 1 x0 2 5 det D (z) (2.3)

Among all the MCn spaces, the ones for which n 5 2p have a special
status (Fleury et al., 1993). In that case, one defines the lth conjugate of a

multicomplex number z as follows:

z
( l)

5 o
n 2 1

i 5 0

xi e
i(2l 1 1), l 5 0, 1, 2, . . . ,n 2 1 (2.4)

This conjugation satisfies

z
( l 1 n)

5 z
( l)

, z
(l )

1 z
(l )

2 5 z1z23
( l)

, (2.5)

and leads to the following expression for |z|n:

|z|n 5 P
n 2 1

l 5 0
z

( l)

(2.6)

It is then convenient to introduce the differential operators

-
( l)

5
1

n o
n 2 1

i 5 0

v 2 iee 2 i -
- xi

(2.7)

satisfying -
( l)

z
(k)

5 d kl. It was shown (Fleury e al., (1995) that most of the

theorems of complex analysis can be extended to the MCn , n . 2, spaces.

A main property useful for the sequel is that a mapping F: MCn ª MCn is

derivable at z iff
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-
( l)

F
(k)

5 0, " l Þ k (2.8)

A function satisfying (2.8) will be called holomorphic.

The lth conjugate z
( l)

of z can be simply understood as a tool for calculating

|z| as in Fleury et al. (1995). However, for our convenience, any element z

of MCn will be seen as parametrized by the n multicomplex number z
(l)

. This

is equivalent to saying, that (2.4) can be inverted. As an easy example, for

n 5 2, a complex number z 5 x0 1 x1 ? i parametrized by x0 and x1 can also

be parametrized by the two conjugates z
(0)

5 z and z
(1)

5 z.
This procedure will be useful for developing superspace structure and

plausible superconformal fields theories on MCn. Thus, we give a brief

digression on superconformal structure on C 5 MC2. A superconformal

structure is the supergeneralization of the conformal one which is equivalent

to the usual complex structure of the one-complex dimensional manifold

(which is a Riemann surface). More precisely, a superconformal manifold
SÃ1/N of complex dimension 1/N is a real Z2-graded manifold such that the

transition functions on the overlapping U a ù U b are the following:

(a) Superanalytic, i.e.,

z b 5 z b (z a , u i
a ), u j

b 5 u j
b (z a , u i

a ) (2.9)

where z g , u j
g , g P I, j 5 1, 2, . . . , N, and their complex conjugates are the

local coordinates of the open set of U g .

(b) The usual covariant spinor superderivatives Di a , i 5 1.2, . . . , N,
transform homogeneously

Di a 5 (Di a ? u
j
b ) Dj b (2.10)

In the N 5 2 superconformal case, the spinor derivatives D + and D 2 are the

usual supersymmetric operators satisfying the N 5 2 superalgebra:

{D +, D 2 } 5 2
-
- z

D 1 2 5 D 2 2 5 0 (2.11)

These equations can be realized locally on the following heterotic superspace:

Z M 5 1 z, u 6 5
1

! 2
( u 1 6 i u 2) 2

D 6 5
-

- u 7 1 u 6 -
- z

(2.12)
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We note here that most of the theorems of the usual complex analysis can

be extended to the superspace SMCN
2 , , SÃ1/N (e.g., Giddingsand and Nelson,

1988; Saidi and Zakkari, 1991, 1992). In the next section, we generalize
many of the results on the usual superspace SMCN

2 to the case of SMCNÃ
n . 2.

This latter will be seen to be a set of points parametrized by n real numbers

xi , i 5 0, 1, 2, . . . , n 2 1, and a set of Grassmann variables to be fixed

later on; we recall that n is a power of two.

3. ANALYSIS ON THE SUPERMULTICOMPLEX SPACE SMCNÃ
n

By analogy with the building of the usual superspace SC, we define the

superspace SMCNÃ
n as a set of points of MCn together with a set of Grassmann

variables u i. More precisely, a point z in MCn is completely determined by

its n lth conjugates z
(l)

as seen before; thus SMCNÃ
n is the set of points parame-

trized by the multicomplex numbers z
( l)

and the Grassmann coordinates u
( l)

i ,

i 5 1, 2, . . . , Nl , l 5 0, 1, 2, . . . , n 2 1. Then N
Ã

refers to the set (N0, N1,
N2,. . ., Nn 2 1). We note

SMCNÃ
n 5 {( z

( l)

, u
( l)

i), l 5 0, 1, 2, . . . , n 2 1, i 5 1, 2, . . . , Nl}

(3.1)

The motivation of this construction will be examined later. A first remark is

that the number of supersymmetries depends on the direction z
( l)

, in contrast

to the usual complex 2D superspace. Indeed, in that case the total superspace

splits into two heterotic pieces due to analyticity. In the case of MCn , this
property is given by (2.8) and is manifestly more rich for n . 2.)

Recall that the conformal transformations on MCn: Z
( l)

ª F lÃ
(Z)

( l)

are analytic

transformations under which the tangent space elements el [ - / - Z
(l )

transform

as follows:

el 5 o
n 2 1

k 5 0

- Fk

- Z
( l) ? e8k (3.2)

To introduce the notion of superconformal transformations on SMCNÃ
n , we first

define as in the usual case the superanalyic ones. To this end, we need the

covariant spinor derivatives, which read



1236 Ourab, El Kinani, and Zakkari

Di

(l )

5
-

- u i

(l) 1 u i

( l) -

- Z
(l ), l 5 0, 1, 2, . . . , n 2 1, i 5 1, 2, . . . , Nl

(3.3)

They obviously satisfy

H Di

( l)

, Dj

(k) J 5 2 d ij d kl - z
(l)

(3.4)

A transformation ( z
(l )

, u
( l)

i) j f ( z
( l)

, u i)
( l)

on SMCN
n is said to be superana-

lytic iff

D
(k)

i f ( z
(l)

, u i

(l )

) 5 0 " k Þ l (3.5)

i.e.,

f ( z
(l)

, u
(l )

i) 5 1 z
(lÄ )

( z
( l)

, u
( l)

i), u
(lÄ )

( z
(l )

, u
( l)

i) 2 , i 5 1, 2, . . . , Nl (3.6)

It is not hard then to check that under a superanalytic transformation the

covariant derivatives transform as follows:

D
( l)

j 5 o
Nl

i 5 1

(D
( l)

j u
( lÄ )

i D
(lÄ )

i 1 (D
( l)

j z
( lÄ )

2 u
( lÄ )

i D
( l)

j u
( lÄ )

i - z
( lÄ ) (3.7)

Superanalytic transformations under which the derivatives D
( l)

i transform

homogeneously, i.e.,

D
( l)

j 5 o
Nl

i 5 1 1 D
(l)

j u i

( lÄ )

2 Di

( lÄ )

(3.8)

are called, as in the usual case, superconformal transformations. So, a super-
conformal transformation is an analytic one satisfying the superconformal

condition on SMCNÃ
n :

D
( l)

j z
(lÄ )

5 o
Nl

i 5 1

u i

( lÄ )

D
( l)

j u
(lÄ )

i (3.9)

At this step many results on superconformal manifolds can be generalized

to the case of SMCNÃ
n ; as an example, the measure of Bruce et al., (see Cohm,

1987) reads
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dZ
( l)

5 d z
( l)

2 u
(l )

i d u
( l)

i (3.10)

An interesting result consists of the residue theorem on SMCN
n , which is

given by

1

m!
- (k)

m

z2

F ( z
(k)

2 , u i

(k)2

) 5
1

(2 p e n/2)n/2 e d z0

(k)1

Ù ? ? ? Ù dzn/2 2 1

(k)1

Ù d u 1

(k)1

Ù ? ? ? Ù d u Nk

(k)1

F (z1

(k)

, u i

(k)1

)
u 12

(k)

Z12

(k)m 1 1
(3.11)

1

m!
(k)
m

z2

D1

(k)2

F ( z
(k)

2 , u i

(k)2

) 5
1

(2 p e n/2)n/2 * d z0

(k)1

Ù ? ? ? Ù dzn/2 2 1

(k)1

Ù d u 1

(k)1

Ù ? ? ? Ù d u Nk

(k)1

F (z1

(k)

, u 1

(k)1

)
1

Z12

(k)m 1 1 (3.12)

where

D i

(k)2

5 - (k)2
u i

1 u i

(k)2

- (k)
z2

, i 5 1, 2, . . . , Nk , k 5 0, 1, 2, . . . , n 2 1

u
(k)

12 5 o
Nk

i 5 1

u i

(k)1

2 u i

(k)2

( z
(k)

, u i

(k)

) [ 1 z
(k)

, u
(k)

1, u
(k)

2, . . . , u
(k)

Nk 2
z

(k)

5 z0

(k)

1 z1

(k)

1 ? ? ? 1 z
(k)

n/2 2 1, z i 5 xi 1 xi 1 n/2 ? e n/2

and

Z12

(k)

5 z
(k)

1 2 z
(k)

z 2 o
Nk

i 5 1

u i

(k)1

u i

(k)2

We will not give here a complete proof of (3.11) and (3.12); however, one

can verify that they reduce to the right expressions for n 5 2 and, for example,

for N0 5 N1 5 N 5 1. Indeed, if n 5 2, then k 5 0 or 1 and N 5 1 leads

to i 5 1, so we have

D
(0)

1 [ D and D
(1)

1 [ D

We have also
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u 12

(0)

5 u 1

(0)

2 u 2

(0)

[ u 1 2 u 2

u 12

(1)

5 u 1

(1)

2 u 2

(1)

[ u 1 2 u 2

Z12

(0)

5 z1

(0)

2 z2

(0)

2 u 1

(0)1

u 1

(0)2

1 [ z [ z1 2 z2 2 u 1 u 2

Z12

(1)

5 z1

(1)

2 z2

(1)

2 u 1

(1)1

u 1

(1)2

[ z1 2 z2 2 u 21 u

so that and for k 5 0 we obtain

1

m!
- m

z2 F (z2, u 2) 5
1

2 p i
e dz1 d u 1 F (z1, u 1)

u 12

Z m 1 1
12

and

1

m!
- m

z2 DF(z2, u 2) 5
1

2 p i
e dz1d u 1 F (z1, u 1)

1

Z m 1 1
12

(3.13)

These are the known residue formulas for the superspace SC1; the value

k 5 1 leads to the same expressions with the variables z and u .

The expressions (3.11) and (3.12) will be useful in the determination

of the operator product expansion (OPE) J (z1

( l)

, u
( l)1

i) f (z2

( l)

, u
(l )2

i) of some super-

current J and a tensor f SMCNÃ
n . We are led then to develop the tensor analysis

on a supermulticomplex space. We will introduce superconformal tensors on

SMCNÃ
n and discuss a plausible superfield theory on the SMCN

n space. For

simplicity, we consider the case of SMC1
n.

Recall first that the primary field f (z) on C is a field which transforms

as follows under a conformal transformation z ª z
Ä
(z)

f (z) 5 1 dz
Ä

dz 2
h

? f Ä (z
Ä
) (3.14)

h is said to be the conformal weight of f .

Equation (3.14) is equivalent to saying that f (z) dzh is invariant under

any conformal transformation. Following this strategy, the superanalyticity
property (3.6) leads us to consider the SMCN

n space as a gathering of n ª chiralº

superspaces Z
( l)

[ ( z
( l)

, u
(l

1, . . . , u
(l )

Nl), l 5 0, 1, 2, . . . , n 2 1.

A superfield f on SMCN
n depends then on the variable Z for a given l:

f ( z
( l)

, u
(l )

1, . . . , u
( l)

Nl) 5 f (Z
( l)

)

The generalization of (3.14) to the case of the supertensor f i1...iN(Z)
(l )

, N
$ 0, leads to
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f Ä i1...iN(Z
( lÄ )

) d j
(lÄ )

i
1 ? ? ? d j

(lÄ )

iN 5 f i1...iN
(Z
( lÄ )

)d j
( l)

i1
? ? ? d j

(l)

iN (3.15)

where the differentials d j
( l)

1, are generalizations of dZ
( l)

. They are characterized

by the transformation law

d j
(lÄ )

i 5 o
N

l

j 5 1

(D
( l)

j u
( lÄ )

i) d j
( l)

j (3.16)

under a superconformal transformation Z
( l)

ª Z
( lÄ )

.

In the next section we develop the ingredients of a supermulticonformal

theory on SMCNÃ
n ; we will discuss the case N 5 1 for simplicity.

4. N 5 1 SUPERMULTICONFORMAL FIELD THEORY ON SMCn

As a consequence of the previous discussion, a primary superfield

f (Z
( l)

) on SMCn of weight d
(l)

is a tensor which transforms as follows under a

superconformal transformation Z ª Z,

f Ä ( z
(lÄ)

, u
( lÄ )

) 5 (D
(l )

u
(l)

) 2 d f ( z
( l)

, u
( l)

) (4.1)

Under an infinitesimal superconformal transformation

u
(l )

j u
( lÄ )

5 d u
( l)

(4.2)

Z
( l)

j z
(lÄ )

5 z
(l)

1 v ( z
(l )

), v (Z
( l)

, u
( l)

) 5 d z
( l)

1 u
( l)

d u
( l)

Equations (4.1) reduces to

d v f ( z
( l)

, u
(l )

) 5 1 12 (D
(l )

V ? D
( l)

1 v - (l)
z

1 h
(l )

- (l)
z

v 2 f ( z
( l)

, u
( l)

) (4.3)

where d
(l )

5 2 h
( l)

. For the superconformal transformations (4.2), the following
relation is valid:

d v f (z2

(l )

, u
(l)2

) 5
1

(2 p e n/2)1n/2 # d z0

( l)1

Ù ? ? ? Ù

d z
(l)1

n/2 2 1d u
(l )1

v ( z
( l)1

, u
(l )1

) T ( z
( l)

1, u
( l1)

) f (z2

( l)

, u
(l)2

) (4.4)

where T is the stress-energy supertensor of the theory. It can be written as
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T ( z
( l)

, u
( l)

) 5 TF(Z
( l)

) 1 u
( l)

TB( z
(l )

) (4.5)

whereTF and TB (respectively the fermionic and bosonic parts of T.
Now by using (3.11) and (3.12), a comparaison of (4.3) and (4.4) leads

to the following operator product expansion:

T ( z
( l)

1, u
(l)1

) F (z2

(l)

, u
(l)2

) 5 3 h
(l) u 12

( l)

z12

(l)2 1
1/2

z12

(l) D
( l)

2 1
u
( l)

z12

( l) - z2

2(l) 4 f (z2

( l)

, u
( l)2

) (4.6)

Notice that the above equation means that the energy tensor is of weight

3/2, as for the usual N 5 1, n 5 2 theory. Moreover, (4.6) can be taken as

the defining property of primary superfields on SMC1
n. We are now interested

in the superconformal properties of the superfield T, which is in turn a quasi-

primary superfield. We have the following OPE:

T ( z
(l)

1, u
(l)1

) T ( z
( l)

2, u
(l)2

) 5
c
( l)

/4

z12

(l)3
1 3 3

2

u
(l )

12

z12

(l)2
1

1/2

z12

(l) D
(l )

2 1
u 12

( l)

z12

( l) - z2

(l) 4 T ( z
( l)

2, u
(l)2

) (4.7)

where the multi-complex number c
( l)

stands for a parameter of the theory.

Using then the decomposition (4.5) of T into its fermionic and bosonic parts
TF and TB, the OPE (4.7) leads to the following relations:

TF(z1

( l)

) TF(z2

(l )

) 5
c
( l)

/4

z12

(l)3
1

1/2

z
(l )

12

TB(z2

( l)

)

TB(z1

( l)

) TF(z2

(l)

) 5
3/2

z12

(l)2
TF( z

( l)

) 1
1

z12

( l) - z2
( l)

TF(z2

( l)

) (4.8)

TB( z
( l)

1) TB(z2

(l )

) 5
2

z12

(l)2
TB(z2

( l)

) 1
1

z12

(l) - (l)
z2

TB(z2

( l)

) 1
3/4 c

(l)

z12

(l)4
z12

(l)

5 z
( l)

1 2 z2

( l)

For invertible z, the Laurent modes of TF and TB, say G
( l)

m and

L
( l)

m , m P Z, satisfy the following commutation relations:
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[ L
(L)

m , l
(l )

n] 5 (m 2 n) L
(l)

m 1 n 1
c
(l )

8
(m 3 2 m) d m 1 n

[L
( l)

m , G
( l)

n] 5 1 m2 2 n 2 G
( l)

m 1 n (4.9)

{G
( l)

m , G
(l)

n} 5 c
( l)

1 m 2 2
1

4 2 d r 1 n 1 2 L
(l )

m 1 r

Thus, we have n commuting copies of the N 5 1 super-Virasoro algebra.

The reason why the symmetry algebra becomes infinite dimensional is due

to the fact that we are in a critical-dimensional space. In the next section,

we give a model of a bosonic theory on MCn; a fermionic model (and thus

a supersymmetric model) needs further developement.

5. BOSONIC THEORY ON MCn

Recall that a two-dimensional free bosonic field theory is described by

the following action:

SC , * dz dz h a b - a X - b X, a , b 5 z, z (5.1)

with h zz 5 h zz 5 1/2 and h zz 5 h zz 5 0. The equation of motion shows that

the field X (z, z) splits into two parts

X (z, z) 5 x (z) 1 x(z) (5.2)

such that

- zx (z) 5 - zx(z) 5 0 (5.3)

The generalization of (5.1) to the MCn spares reads as follows:

SMCn , e d z
(0)

Ù d z
(1)

Ù . . . Ù d z
(n 2 1)

J kl - kX - lX (5.4)

where

(J kl) 5 1 0 1/n

? ? ?
1/n 0 2 (5.5)

The equation of motion leads to the relation

J kl - k - lX 5 0 (5.6)

which obviousely reduces to the known one for n 5 2 as j kl goes to

( 0 1/2
1/2 0 ). The solution of (5.6) is given by
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X ( z
(0)

, z
(1)

, . . . , z
(n 2 1)

) 5 x
(0)

( z
(0)

) 1 x
(1)

( z
(1)

) 1 . . . 1 x
(n 2 1)

( z
(n 2 1)

) (5.7)

generalizing then (5.2) on MC2. One can then develop all the machinery of

conformal field theory in each direction z
( l)

, l 5 0, 1, 2, . . . , n 2 1. Finally,

we note that (5.4) is a simple generalization of (5.1).

Indeed, the general form of the action on MCn is

SMCn , e d ns ? J kl - k X - l X (5.8)

where d ns is some measure on MCn given by

d ns 5 gi0i1...in 2 1 d z

(j0)

Ù ? ? ? Ù d z

(in 2 1)
(5.9)

The tensors gi0i1...in 2 1 and J kl are then shown to satisfy a certain number, of

which (5.4) is in fact a plausible solution. We will study of action (5.8) on

a future occasion.
Finally, note that we have seen that most of the properties on a multicom-

plex space can be extended to the associated superspace, called the super-

multicomplex space. For this we have adopted a geometric method which is

different from the algebraic one using generalized Clifford algebra (Fleury

et al., 1995).
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